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Logistic regression and discriminant analyses are both applied in order to predict the probability of a specific categorical outcome
based upon several explanatory variables (predictors). The aim of this work is to evaluate the convergence of these two methods
when they are applied in data from the health sciences. For this purpose, we modeled the association of several factors with the
prevalence of asthma symptoms with both the two methods and compared the result. In conclusion, logistic and discriminant
analyses resulted in similar models.
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1. Introduction

Logistic regression and linear discriminant analyses are
multivariate statistical methods which can be used for the
evaluation of the associations between various covariates and
a categorical outcome. Both methodologies have been exten-
sively applied in research, especially in medical and socio-
logical sciences. Logistic regression is a form of regression
which is used when the dependent variable is dichotomous,
discrete, or categorical, and the explanatory variables are of
any kind. In medical sciences, the outcome is usually the
presence or absence of a stated situation or a disease. Using
the logit transformation, logistic regression predicts always
the probability of group membership in relation to several
variables independent of their distribution. The logistic
regression analysis is based on calculating the odds of the
outcome as the ratio of the probability of having the outcome
divided by the probability of not having it. Discriminant
analysis is a similar classification method that is used to

determine which set of variables discriminate between two
or more naturally occurring groups and to classify an
observation into these known groups. In order to achieve
that discriminant analysis is based on the estimation of the
orthogonal discriminant functions, the linear combination
of the standardized independent predictor variables gives
the greatest means differences between the existing groups.
Thus, it can be proposed that both discriminant analysis and
logistic regression can be used to predict the probability of a
specified outcome using all or a subset of available variables.

Although the theoretical properties have been studied
extensively throughout the literature, the choice of the proper
method in data analysis is still a question for the researcher.
The aim of this work after summarizing the properties of the
two discriminating methods is to explore the convergence of
the two analytical methods when they are used to evaluate
categorical health outcomes in the pediatric epidemiological
research. In particular, we tested the associations between
anthropometric and lifestyle patterns in relation to asthma

mailto:geanton@med.uoa.gr


2 International Journal of Pediatrics

prevalence among 10–12-year-old children, using both sta-
tistical methods. So, the reader will elucidate the differences
and the similarities of the two methods in order to make the
appropriate choice in their application.

2. Material and Methods

2.1. Linear Discriminant Analysis. Discriminant analysis
focuses on the association between multiple independent
variables and a categorical dependent variable by forming
a composite of the independent variables. This type of
multivariate analysis can determine the extent of any of the
composite variables discriminates between two or more pre-
existing groups of subjects and also can derive a classification
model for predicting the group membership of new observa-
tions [1]. The simplest type of discriminant analysis is when
the dependent variable has two groups. In this case, a linear
discriminant function that passes through the means of the
two groups (centroids) can be used to discriminate subjects
between the two groups. When there are more groups, the
number of groups minus one function is needed to classify
an observation among them. For each of the groups, linear
discriminant analysis assumes the explanatory variables to
be normally distributed with equal covariance matrices.
For each case, the estimated coefficient for an independent
variable is multiplied by the case’s score on that variable.
These products are summed and added to the constant, and
the result is a composite score, that is, the discriminant score
for that case.

The linear discriminant function (LDF) is represented by

LDF = b0 + b1xi1 + b2xi2 + · · · + bkxik = bX , (1)

where bj is the value of the jth coefficient, j = 1, . . . , k,
and xi j is the value of the ith case of the jth predictor. The
LDF can also be written in standardized form which allows
comparing variables measured on different scales. In the
standardized LDF, each variable is adjusted by subtraction
of its mean value and division by its standard deviation.
Coefficients with large absolute values reflect greater dis-
criminating ability to their corresponding variables. From
the LDF, scores can estimate predicted probabilities and
predicted group membership for every case on the dependent
variable. This approach is based on the rationale that it is
more likely that the independent and dependent variables are
related as the between-groups sum of square is larger relative
to within-group sum of squares. Also the ratio of between-
group divided by total sum of squares (eta-squared statistic
or explained variability) or of within-group divided by total
sum of squares (Wilks’ lambda statistic or unexplained
variability) is used to assess the relationship. As we can see,
the ratio of between-group divided by within-group sum of
squares is an analogue to the ratio of variances, which is the F
statistic, a test that controls the possibility that the observed
relationship is due to chance.

The principle by which the discriminant coefficients (or
weights) are selected is that they maximize the distance
between the two group means (centroids) |y1 − y2|. Fisher
[2] was the first who suggested to transform the multivariate

observation x to univariate observations y in such way that
the y’s derived from groups 1 and 2 have the maximum
distance between them. Thus, the linear combination y =
a′x is the one that maximizes the ratio (squared distance
between sample means)/(sample variance y). The vector of
coefficients is given by the eigenvectors of the matrix B ∗
S−1, where B = (x1 − x2)′ is the between-group matrix
and S is an estimate of Σ. A very important characteristic
of these composite sums of squares is that they enclose
the variability and the covariability of each variable. The
discriminant coefficients can be calculated in unstandardized
or standardized form but they are irrelatively of the form, less
informative than those in regression. Assuming that there
are 2 groups, x1, x2 are the means of each group, and Sis
the pooled covariance matrix, the allocation rule based on
Fisher’s discriminant functions is the following:
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2.2. Logistic Regression Analysis. Logistic regression is a
form of regression which is used when we want to predict
probabilities of the presence or absence of a particular
disease, characteristic, or an outcome in general based on
a set of independent of explanatory variables of any kind
(continuous, discrete, or categorical) [3]. Since the predicted
probability must lie between 0 and 1, simple linear regression
techniques are insufficient to achieve that, because they allow
the dependent variable to pass these limits and to produce
inconsistent results. Defined as P1, the probability of an
object is belonging to group 1, and as P0, the probability of an
object is belonging to group 0. The logistic regression model
has the form of

zi = log
(
Pi1
Pi0

)

= b0 + b1xi1 + b2xi2 + · · · + bkxik,
(3)

where Pi1/Pi0 is called the odds ratio, bj is the value of
the jth coefficient, j = 1, . . . , k, and xi j is the value of the
ith case of the jth predictor. The parameters (bo to bk) of
the logistic model are estimated with the use of maximum
likelihood method. The probability of an event to occur can
be calculated using the logistic regression model

P
(
Yi = 1 \ Xi

) = eb
TXi

1 +
(
ebTXi

) = 1
1 + e−bTXi

, (4)

where eb
TXi is the linear predictor of the logistic regression

function, and Yi is the event under study (dependent
variable).

If we use a probability cutoff of .5, then we can classify
an object to group 1 if the estimated P1 > .5 and to
group 0 if P1 < .5. In order to estimate the parameters
of the logistic regression model, the method of maximum
likelihood maximizes the coefficients of the log-likelihood



International Journal of Pediatrics 3

function, a statistic which summarizes the information of the
predictor variables.

Both logistic and linear discriminant regression analyses
have the same functional frame; a composite of the indepen-
dent variables and a rule for classification. But there are many
differences about the assumptions made in order to apply
them in a dataset.

Regarding discriminant analysis, the assumptions have
great similarity with the assumptions made for ordinary
regression and are (i) independent variables must have
a multivariate normal distribution, thus allowing only
continuous or ratio variables to enter the analysis and
excluding all the forms of categorical variables, (ii) the
variance-covariance matrix of all the independent variables
must be homogenic among the population groups divided
by the dependent variable (assumption that is controlled
with several statistics, such as Box’s M test), and (iii)
independence of the cases.

Accurate estimation of the discriminant function param-
eters demands sample size of minimum 20 cases for each
predictor variable and at least 20 cases for each of the
dependent variable groups, otherwise the estimation of the
coefficients is unstable and might lead to misleading results.
The dependent variable in a discriminant analysis should be
categorical, dichotomous, or polytomous. The population
groups of the dependent variable should be mutually exclu-
sive and exhaustive. Discriminant independent variables are
assumed to be continuous. When categorical variables are
included in the analysis, the reliability of discrimination of
the analysis decreases [4, 5]. Discriminant analysis is highly
sensitive to outliers. Lack of homogeneity of variances may
indicate the presence of outliers in one or more groups.
Lack of homogeneity of variances will mean that significance
tests are unreliable, especially if sample size is small and
the split of the dependent variable is very uneven. Lack of
homogeneity of variances and presence of outliers can be
evaluated through scatterplots of variables.

Logistic regression also has many limitations. At first,
logistic regression assumes that there is an s-shaped depen-
dency between the probabilities of group memberships
and a linear function of the predictor variables. It also
makes the assumption of independency among the obser-
vations. Analysis of the residuals may reveal patterns that
indicate the presence of multicolinearity or can identify
outliers, which can distort the valid estimation of the
logistic coefficients. Also in order for logistic regression to
give trustworthy and reliable estimates, it requires a large
number of cases. The more unequal groups are formed
from the dependent variable, the more cases are needed.
On the other hand, logistic regression does not demand
multivariate normality or homoscedasticity for the predictor
variable, but if these conditions are fulfilled, the power of
the prediction is increased [6, 7]. As in OLS regression,
outliers can affect results significantly. The researcher should
analyze standardized residuals for outliers and consider
removing them or modeling them separately. Also, unlike
OLS regression, logistic regression uses maximum likelihood
estimation (MLE) rather than ordinary least squares (OLS)
to derive parameters. MLE relies on large-sample asymptotic

normality which means that reliability of estimates declines
when there are few cases for each observed combination of
independent variables.

For the evaluation of the two methods, sensitivity,
specificity, and accuracy will be also measured in the same
dataset. Sensitivity of a binary classification test with respect
to some class is a measure of how well this test identifies
a condition and expresses the probability of a case being
classified in that class, meaning the proportion of true
positives of all positive cases in the population. Specificity, on
the other hand, expresses the proportion of the true negative
classified cases of a binary classification test of all the negative
cases in the population. Finally, accuracy is a measure of the
degree of conformity of a measured or calculated quantity to
the actual value. It is calculated as the proportion of the true
results of a binary classification test (true positive and true
negative) among all possible results.

Thus, linear discriminant analysis and logistic regression
can be used to assess the same research problems. Their
functional form is the same but they differ in the method
of the estimation of their coefficient. Discriminant analysis
produces a score, similar to the production of logit of
the logistic regression. Both methods with the appropriate
mathematical calculations produce the predicted probability
of the classification of a case into a group of the dependent
variable, and with the use of the appropriate cutoff value, we
can also produce the predicted category of each observation.
When categorical variables are entered in the analysis and
are discrete measured, only the ones with large number
of categories, more than 5, approximate the mean and the
variance of the variables considered continuous and can be
assumed to be normally distributed. Thus, the assumption of
normality is fulfilled, and discriminant analysis makes robust
estimations. On the contrary, logistic regression always
produces robust estimations as it makes no assumption
about the distribution of the explanatory variables or the
linear relationship of them with the dependent variable and
the equality of the variance within this group. So, when the
assumptions of the discriminant analysis are violated, we
should always avoid the discriminant analysis and analyze
our data with logistic regression, which gives robust results
since it can handle both continuous and categorical variables
[8].

2.3. Application

2.3.1. Use of Epidemiologic Data to Evaluate the Prevalence
of Asthma. In the following study, we compared the results
of discriminant and logistic regression analyses in predicting
the presence of any asthma symptoms among Greek children
aged 10–12 years old living in urban environment. During
2005, 700 students (323 males and 377 females), aged 10–
12 years (4th–6th grade), were selected from 18 schools
located in several areas of Athens, randomly selected from
a list of schools provided by the regional education offices.
The participation rate of the study was 95%. In order
to evaluate asthma symptoms in the study sample, the
parents completed seven questions according to the ISAAC
protocol [9]. Particularly, the evaluation of the presence
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and the duration of asthma symptoms was assessed by four
questions: (i) if children ever had wheezing, (ii) if they ever
had disturbed sleep due to wheezing, (iii) if they ever had
asthma, and (iv) if they ever had dry cough at night, except
in cases of cold or chest infection. Further details about the
data used may be found elsewhere [10]. The independent
variables that were associated at a significance level a =
0.05 with the independent variable “presence of any asthma
symptoms” were entered in a principal components analysis
(PCA). Eighteen variables were fulfilling the above criterion,
so 18 principal components were extracted from the analysis.
Applying Kaiser’s criterion (eigenvalue >1), we retained 8
factors, all mutually independent.

In order to examine the relationship between childhood
asthma and the patterns that are extracted from PCA,
the retained 8 components (patterns) were the predictor
variables that entered in both discriminant and logistic
regression models. The assumptions for the two models
were all fulfilled (the components due to their extraction
methods follow the multivariate normal distribution and
are mutually independent), and variance covariance matrices
of the groups were equivalent—Box’s M test of equivalence
P-value >.05—for the discriminant analysis, independency
of the predictors, absence of multicolinearity after residual
checking, and large number of observations for logistic
regression model. We used the standardized canonical
discriminant function coefficients and the unstandardized
function coefficients for discriminant analysis and Z statistic
(squared Wald statistic) for logistic regression, to evaluate
how much each one of the variables contributes to the
discrimination between two groups. The contribution of the
respective variables to the discrimination depends on how
large the coefficients are. We also compared the sign and
magnitude of coefficients. Box’s M test was used to check
the equality of the covariance matrices, and it was revealed
that they were equal (P > .05), thus this assumption for
discriminant analysis was met.

For each model, we plotted the corresponding response
operating characteristics (ROC) curve. An ROC curve
graphically displays sensitivity and 100% minus specificity
(false positive rate) at several cutoff points. By plotting the
ROC curves for two models on the same axes, one is able
to determine which test is better for classification, namely,
that test whose curve encloses the larger area beneath it.
All analyses were performed using the SPSS version 13.0
software (SPSS, Inc., Chicago, Ill, USA).

3. Results

Using PCA and applying Kaiser’s criterion, 8 patterns of our
original data were extracted, expressing the anthropometric
indexes of the children, breakfast consumption, frequency of
consuming athletic refreshments, parental anthropometric
indexes, shortness of breath during recreational activities,
birth weight and breastfeeding, eating cheese pies, and
frequency of listening to music. These variables were used
in both discriminant and logistic regression analyses, and
both techniques revealed that anthropometric character-
istics, athletic refreshment consumption frequency, and
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Figure 1: Receiver operating characteristics (ROC) curves for the
discriminant analysis and logistic regression models.

eating cheese pies were the most important contributors
(Table 1). Moreover, we observe that the direction of the
relationships was the same, and there were not extreme
differences in the magnitude of the coefficients. The overall
correct classification rate was 77.4% for discriminant analysis
and 79.2% for logistic regression analysis. Table 2 presents
sensitivity, specificity, and accuracy of both approaches at
various cutoffs of the probability of having any asthma
symptoms. Although some differences are observed between
the methods, as we can see in Figure 1, the ROC curves of
the aforementioned models clearly indicate that the logistic
model is similar to the discriminant analysis model (i.e., no
difference in the area under the curve (AUC), 74.6% versus
74.4%, P = .9).

4. Discussion

In general, both logistic regression and discriminant analyses
converged in similar results. Both methods estimated the
same statistical significant coefficients, with similar effect
size and direction, although logistic regression estimated
larger coefficients overall. The overall classification rate for
both was good, and either can be helpful in predicting the
possibility of a child having asthma symptoms in the general
population. Logistic regression slightly exceeds discriminant
function in the correct classification rate but the differences
in the AUC were negligibly, thus indicating no discriminating
difference between the models.
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Table 1: Predictors, standardized, and unstandardized coefficients for the discriminant analysis model and logistic regression model.

Predictors
Logistic regression Discriminant analysis

b coefficients Z statistic Unstandardized coefficients Standardized coefficients

Anthropometric characteristics 0.529 2.676 0.325 0.319

Breakfast eating frequency 0.005 0.01 −0.011 −0.011

Athletic refreshments frequency consumption −0.615 2.784 −0.459 −0.449

Parental BMI 0.268 1.397 0.103 0.103

Shortness of breath during activities 0.237 1.162 0.148 0.148

Birth weight and breastfeeding −0.289 1.37 −0.182 −0.182

Cheese pies eating 0.355 1.695 0.226 0.225

Listening to music frequency −0.294 1.393 −0.126 −0.126

Table 2: Sensitivity and specificity of logistic regression and discriminant analysis models, at various cutoff points for the probability of
having any asthma symptoms.

Cutoff value∗
Logistic regression Discriminant analysis

Sensitivity (%) Specificity (%) Accuracy (%) Sensitivity (%) Specificity (%) Accuracy (%)

.05 94.9 8.3 29.6 100 0.8 25.1

.10 92.3 23.3 40.2 100 1.7 25.8

.25 69 69.2 69.2 92.3 19.2 37.1

.50 28.2 95.8 79.2 71.8 70 70.4

.75 5.1 100 76.8 25.6 95 78

.90 0 100 75.5 5.1 100 76.8
∗P (asthma symptoms): values less than or equal to the cutoff value indicate that the child is not having any asthma symptoms; those greater than the cutoff

value indicate that a child is having one of asthma symptoms.

Discriminant analysis can use as a dependent variable a
categorical variable with more than two groups, usually three
of four. The number of the predicted discriminant functions
equals with the number of the variable’s categories minus 1.
All of them have different sets of coefficients and produce
a discriminate score for each case, but they have different
classification ability. So, for a four level categorical dependent
variable entering discriminant analysis, three discriminant
functions are derived with their correspondent scores, and
only one or two have the necessary power to achieve the
optimum classification rates. The question arises in this case
is about the number of functions which is needed to retain
from the available set of functions.

In their paper, Brenn and Arnesen [11] compared the
ability of discriminant analysis, logistic regression, and Cox
model when applied in a dataset of 6595 men aged 20–
49, who were followed for 9 years for total and coronary
deaths, in order to select possible risk factors. People in
the population sample were divided into two groups, one
with mortality 5 per 1000 and one with 93 per 1000.
Logistic regression and Cox model derived the same set
of variables, and discriminant analysis set of variables had
only minor differences. The researchers also noticed that a
time-saving option, offered for both the logistic and Cox
selection, showed no advantage compared with discriminant
analysis, since by analyzing more than 3800 subjects, the
logistic and Cox methods consumed, respectively, 80 and 10
times more computer time than discriminant analysis. Thus,
the researchers reached to the conclusion that discriminant

analysis is preferred for preliminary or stepwise analysis,
otherwise Cox method should be used.

In the study of Pohar et al. [8], which used several sim-
ulated datasets and discrimination indexes, the convergence
of the two methods is examined when the linear discriminant
assumptions for normality of the distribution of explanatory
variables are met, when they are violated, and when they are
categorized for various parameters of the explanatory vari-
ables such as sample size, covariance matrix, Mahalanobis
distance, and the direction of the distance between the group
means. The authors concluded that linear discriminant
analysis is a more appropriate method when the explanatory
variables are normally distributed. For categorized predictor
variables, linear discriminant analysis remains preferable,
and logistic regression overcomes discriminant analysis only
when the number of categories is small (2 or 3). When the
assumptions of linear discriminant analysis are not met, the
usage of it is not justified, while logistic regression gives
good results regardless of the distribution of the predictors.
In a study by Montgomery et al. [12], who compared
the two methods in veterinary data using stepwise linear
discriminant analysis and logistic regression in a first dataset
and comparing the selected variables, the order of selection
and the sign and the magnitude of the estimated coefficients
of the discriminating models in a second dataset, resulted
that although both methods converged logistic regression
is preferable to discriminant analysis particularly when
the assumptions of normality and equal variance are not
met.
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In order to compare the two methods, we applied them
in a real dataset, and we did not use simulation methods,
as the number of the observations in the dataset, although
not very large, was sufficient to provide reliable results. Also,
although linear discriminant function is a better method
than logistic regression when the normality assumptions are
met, the differences between them become negligible when
the sample size is large enough (50 observations or more).

5. Conclusion

In conclusion, logistic regression and discriminant analyses
were similar in the model analysis. In order to decide which
method should be used, we must consider the assumptions
for the application of each one.
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